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ABSTRACT

This chapter describes a sequence of Monte Carlo methods� impor�
tance sampling� rejection sampling� the Metropolis method� and
Gibbs sampling� For each method� we discuss whether the method is
expected to be useful for high�dimensional problems such as arise in in�
ference with graphical models� After the methods have been described�
the terminology of Markov chain Monte Carlo methods is presented�
The chapter concludes with a discussion of advanced methods� includ�
ing methods for reducing random walk behaviour�

For details of Monte Carlo methods� theorems and proofs and a full
list of references� the reader is directed to Neal �����	� Gilks� Richardson
and Spiegelhalter ����
	� and Tanner ����
	�

�� The problems to be solved

The aims of Monte Carlo methods are to solve one or both of the following
problems�

Problem �� to generate samples fx�r�gRr�� from a given probability distri�
bution P �x	��

Problem �� to estimate expectations of functions under this distribution�
for example

� � h��x	i �
Z
dNx P �x	��x	� ��	

�Please note that I will use the word �sample� in the following sense� a sample from
a distribution P �x� is a single realization x whose probability distribution is P �x�� This
contrasts with the alternative usage in statistics� where �sample� refers to a collection of
realizations fxg�
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The probability distribution P �x	� which we will call the target density�
might be a distribution from statistical physics or a conditional distribution
arising in data modelling � for example� the posterior probability of a
model�s parameters given some observed data� We will generally assume
that x is an N�dimensional vector with real components xn� but we will
sometimes consider discrete spaces also�

We will concentrate on the �rst problem �sampling	� because if we have
solved it� then we can solve the second problem by using the random sam�
ples fx�r�gRr�� to give the estimator

�� � �

R

X
r

��x�r�	� �	

Clearly if the vectors fx�r�gRr�� are generated from P �x	 then the expecta�

tion of �� is �� Also� as the number of samples R increases� the variance of
�� will decrease as ��

R � where �� is the variance of ��

�� �

Z
dNx P �x	���x	� �	�� ��	

This is one of the important properties of Monte Carlo methods�

The accuracy of the Monte Carlo estimate �equation ���� is
independent of the dimensionality of the space sampled� To be

precise� the variance of �� goes as ��

R � So regardless of the dimensionality

of x� it may be that as few as a dozen independent samples fx�r�g su�ce
to estimate � satisfactorily�

We will �nd later� however� that high dimensionality can cause other dif�
�culties for Monte Carlo methods� Obtaining independent samples from a
given distribution P �x	 is often not easy�

���� WHY IS SAMPLING FROM P �x� HARD�

We will assume that the density from which we wish to draw samples� P �x	�
can be evaluated� at least to within a multiplicative constant� that is� we
can evaluate a function P ��x	 such that

P �x	 � P ��x	�Z� ��	

If we can evaluate P ��x	� why can we not easily solve problem �� Why is it
in general di�cult to obtain samples from P �x	� There are two di�culties�
The �rst is that we typically do not know the normalizing constant

Z �
Z
dNx P ��x	� ��	
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Figure �� �a� The function P ��x� � exp
�
��	�x� ��	�� � ���
x�

�
� How to draw samples

from this density� �b� The function P ��x� evaluated at a discrete set of uniformly spaced
points fxig� How to draw samples from this discrete distribution�

The second is that� even if we did know Z� the problem of drawing samples
from P �x	 is still a challenging one� especially in high�dimensional spaces�
There are only a few high�dimensional densities from which it is easy to
draw samples� for example the Gaussian distribution��

Let us start from a simple one�dimensional example� Imagine that we
wish to draw samples from the density P �x	 � P ��x	�Z where

P ��x	 � exp
h
����x� ���	� � ����x�

i
� x � �����	� �
	

We can plot this function ��gure �a	� But that does not mean we can draw
samples from it� To give ourselves a simpler problem� we could discretize
the variable x and ask for samples from the discrete probability distribution
over a set of uniformly spaced points fxig ��gure �b	� How could we solve
this problem� If we evaluate p�i � P ��xi	 at each point xi� we can compute

Z �
X
i

p�i ��	

and
pi � p�i �Z ��	

and we can then sample from the probability distribution fpig using various
methods based on a source of random bits� But what is the cost of this
procedure� and how does it scale with the dimensionality of the space�

�A sample from a univariate Gaussian can be generated by computing

cos���u��
p

� log��u��� where u� and u� are uniformly distributed in ��� ��
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N� Let us concentrate on the initial cost of evaluating Z� To compute
Z �equation ��		 we have to visit every point in the space� In �gure �b
there are �� uniformly spaced points in one dimension� If our system had
N dimensions� N � ���� say� then the corresponding number of points
would be ������� an unimaginable number of evaluations of P �� Even if each
component xn only took two discrete values� the number of evaluations of
P � would be ����� a number that is still horribly huge� equal to the fourth
power of the number of particles in the universe�

One system with ���� states is a collection of ���� spins� for example�
a ��� �� fragment of an Ising model �or �Boltzmann machine� or �Markov
�eld�	 �Yeomans ���	 whose probability distribution is proportional to

P ��x	 � exp ���E�x	� ��	

where xn � f��g and

E�x	 � �
�

�



X
m�n

Jmnxmxn �
X
n

Hnxn

�
� ���	

The energy function E�x	 is readily evaluated for any x� But if we wish to
evaluate this function at all states x� the computer time required would be
���� function evaluations�

The Ising model is a simple model which has been around for a long time�
but the task of generating samples from the distribution P �x	 � P ��x	�Z is
still an active research area as evidenced by the work of Propp and Wilson
����
	�

���� UNIFORM SAMPLING

Having agreed that we cannot visit every location x in the state space� we
might consider trying to solve the second problem �estimating the expec�
tation of a function ��x		 by drawing random samples fx�r�gRr�� uniformly
from the state space and evaluating P ��x	 at those points� Then we could
introduce ZR� de�ned by

ZR �
RX
r��

P ��x�r�	� ���	

and estimate � �
R
dNx ��x	P �x	 by

�� �
RX
r��

��x�r�	
P ��x�r�	

ZR
� ��	
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Is anything wrong with this strategy� Well� it depends on the functions ��x	
and P ��x	� Let us assume that ��x	 is a benign� smoothly varying function
and concentrate on the nature of P ��x	� A high�dimensional distribution
is often concentrated in a small region of the state space known as its
typical set T � whose volume is given by jT j � H�X�� where H�X	 is the
Shannon�Gibbs entropy of the probability distribution P �x	�

H�X	 �
X
x

P �x	 log�
�

P �x	
� ���	

If almost all the probability mass is located in the typical set and ��x	
is a benign function� the value of � �

R
dNx ��x	P �x	 will be principally

determined by the values that ��x	 takes on in the typical set� So uniform
sampling will only stand a chance of giving a good estimate of � if we
make the number of samples R su�ciently large that we are likely to hit
the typical set a number of times� So� how many samples are required� Let
us take the case of the Ising model again� The total size of the state space
is N states� and the typical set has size H � So each sample has a chance
of H�N of falling in the typical set� The number of samples required to
hit the typical set once is thus of order

Rmin � N�H � ���	

So� what is H� At high temperatures� the probability distribution of an
Ising model tends to a uniform distribution and the entropy tends to
Hmax � N bits� so Rmin is of order �� Under these conditions� uniform
sampling may well be a satisfactory technique for estimating �� But high
temperatures are not of great interest� Considerably more interesting are
intermediate temperatures such as the critical temperature at which the
Ising model melts from an ordered phase to a disordered phase� At this
temperature the entropy of an Ising model is roughly N� bits� For this
probability distribution the number of samples required simply to hit the
typical set once is of order

Rmin � N�N�� � N�� ���	

which for N � ���� is about ������ This is roughly the square of the number
of particles in the universe� Thus uniform sampling is utterly useless for
the study of Ising models of modest size� And in most high�dimensional
problems� if the distribution P �x	 is not actually uniform� uniform sampling
is unlikely to be useful�

���� OVERVIEW

Having established that drawing samples from a high�dimensional distri�
bution P �x	 � P ��x	�Z is di�cult even if P ��x	 is easy to evaluate� we will
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Figure �� Functions involved in importance sampling� We wish to estimate the expecta�
tion of ��x� under P �x� � P ��x�� We can generate samples from the simpler distribution
Q�x� � Q��x�� We can evaluate Q� and P � at any point�

now study a sequence of Monte Carlo methods� importance sampling�
rejection sampling� the Metropolis method� and Gibbs sampling�

�� Importance sampling

Importance sampling is not a method for generating samples from P �x	
�problem �	� it is just a method for estimating the expectation of a func�
tion ��x	 �problem 	� It can be viewed as a generalization of the uniform
sampling method�

For illustrative purposes� let us imagine that the target distribution is
a one�dimensional density P �x	� It is assumed that we are able to evalu�
ate this density� at least to within a multiplicative constant� thus we can
evaluate a function P ��x	 such that

P �x	 � P ��x	�Z� ��
	

But P �x	 is too complicated a function for us to be able to sample from
it directly� We now assume that we have a simpler density Q�x	 which we
can evaluate to within a multiplicative constant �that is� we can evaluate
Q��x	� where Q�x	 � Q��x	�ZQ	� and from which we can generate samples�
An example of the functions P �� Q� and � is shown in �gure � We call Q
the sampler density�

In importance sampling� we generate R samples fx�r�gRr�� from Q�x	�
If these points were samples from P �x	 then we could estimate � by equa�
tion �	� But when we generate samples from Q� values of x where Q�x	
is greater than P �x	 will be over�represented in this estimator� and points
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Figure �� Importance sampling in action� a� using a Gaussian sampler density� b� using a
Cauchy sampler density� Horizontal axis shows number of samples on a log scale� Vertical
axis shows the estimate ��� The horizontal line indicates the true value of ��

where Q�x	 is less than P �x	 will be under�represented� To take into ac�
count the fact that we have sampled from the wrong distribution� we in�
troduce �weights�

wr � P ��x�r�	

Q��x�r�	
���	

which we use to adjust the �importance� of each point in our estimator thus�

�� �
P

r wr��x�r�	P
r wr

� ���	

If Q�x	 is non�zero for all x where P �x	 is non�zero� it can be proved that

the estimator �� converges to �� the mean value of ��x	� as R increases�

A practical di�culty with importance sampling is that it is hard to
estimate how reliable the estimator �� is� The variance of �� is hard to
estimate� because the empirical variances of the quantities wr and wr��x�r�	
are not necessarily a good guide to the true variances of the numerator and
denominator in equation ���	� If the proposal density Q�x	 is small in a
region where j��x	P ��x	j is large then it is quite possible� even after many
points x�r� have been generated� that none of them will have fallen in that
region� This leads to an estimate of � that is drastically wrong� and no
indication in the empirical variance that the true variance of the estimator
�� is large�
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���� CAUTIONARY ILLUSTRATION OF IMPORTANCE SAMPLING

In a toy problem related to the modelling of amino acid probability distribu�
tions with a one�dimensional variable x I evaluated a quantity of interest
using importance sampling� The results using a Gaussian sampler and a
Cauchy sampler are shown in �gure �� The horizontal axis shows the num�
ber of samples on a log scale� In the case of the Gaussian sampler� after
about ��� samples had been evaluated one might be tempted to call a halt�
but evidently there are infrequent samples that make a huge contribution
to ��� and the value of the estimate at ��� samples is wrong� Even after
a million samples have been taken� the estimate has still not settled down
close to the true value� In contrast� the Cauchy sampler does not su�er from
glitches and converges �on the scale shown here	 after about ���� samples�

This example illustrates the fact that an importance sampler should
have heavy tails�

���� IMPORTANCE SAMPLING IN MANY DIMENSIONS

We have already observed that care is needed in one�dimensional impor�
tance sampling problems� Is importance sampling a useful technique in
spaces of higher dimensionality� say N � �����

Consider a simple case�study where the target density P �x	 is a uniform
distribution inside a sphere�

P ��x	 �

�
� � � ��x	 � RP

� ��x	 � RP
� ���	

where ��x	 � �
P

i x
�
i 	

���� and the proposal density is a Gaussian centred
on the origin�

Q�x	 �
Y
i

Normal�xi� �� ��	� ��	

An importance sampling method will be in trouble if the estimator �� is
dominated by a few large weights wr� What will be the typical range of
values of the weights wr� By the central limit theorem� if � is the distance
from the origin of a sample from Q� the quantity �� has a roughly Gaussian
distribution with mean and standard deviation�

�� � N�� �
p

N��� ��	

Thus almost all samples from Q lie in a �typical set� with distance from the
origin very close to

p
N�� Let us assume that � is chosen such that the

typical set of Q lies inside the sphere of radius RP � �If it does not� then the
law of large numbers implies that almost all the samples generated from Q
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will fall outside RP and will have weight zero�� Then we know that most
samples from Q will have a value of Q that lies in the range

�

����	N��
exp

�
�N


�
p

N



�
� �	

Thus the weights wr � P ��Q will typically have values in the range

����	N�� exp

�
N


�
p

N



�
� ��	

So if we draw a hundred samples� what will the typical range of weights
be� We can roughly estimate the ratio of the largest weight to the median
weight by doubling the standard deviation in equation ��	� The largest
weight and the median weight will typically be in the ratio�

wmax
r

wmed
r

� exp
�p

N
�
� ��	

In N � ���� dimensions therefore� the largest weight after one hundred
samples is likely to be roughly ���� times greater than the median weight�
Thus an importance sampling estimate for a high�dimensional problem will
very likely be utterly dominated by a few samples with huge weights�

In conclusion� importance sampling in high dimensions often su�ers
from two di�culties� First� we clearly need to obtain samples that lie in
the typical set of P � and this may take a long time unless Q is a good
approximation to P � Second� even if we obtain samples in the typical set�
the weights associated with those samples are likely to vary by large factors�
because the probabilities of points in a typical set� although similar to each
other� still di�er by factors of order exp�

p
N	�

�� Rejection sampling

We assume again a one�dimensional density P �x	 � P ��x	�Z that is too
complicated a function for us to be able to sample from it directly� We
assume that we have a simpler proposal density Q�x	 which we can evaluate
�within a multiplicative factor ZQ� as before	� and which we can generate
samples from� We further assume that we know the value of a constant c
such that

for all x� cQ��x	 � P ��x	� ��	

A schematic picture of the two functions is shown in �gure �a�
We generate two random numbers� The �rst� x� is generated from the

proposal density Q�x	� We then evaluate cQ��x	 and generate a uniformly
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Figure �� Rejection sampling� a� The functions involved in rejection sampling� We desire
samples from P �x� � P ��x�� We are able to draw samples from Q�x� � Q��x�� and we
know a value c such that cQ��x� � P ��x� for all x� b� A point �x�u� is generated at
random in the lightly shaded area under the curve cQ��x�� If this point also lies below
P ��x� then it is accepted�

distributed random variable u from the interval ��� cQ��x	�� These two ran�
dom numbers can be viewed as selecting a point in the two�dimensional
plane as shown in �gure �b�

We now evaluate P ��x	 and accept or reject the sample x by comparing
the value of u with the value of P ��x	� If u � P ��x	 then x is rejected�
otherwise it is accepted� which means that we add x to our set of samples
fx�r�g� The value of u is discarded�

Why does this procedure generate samples from P �x	� The proposed
point �x� u	 comes with uniform probability from the lightly shaded area
underneath the curve cQ��x	 as shown in �gure �b� The rejection rule
rejects all the points that lie above the curve P ��x	� So the points �x� u	
that are accepted are uniformly distributed in the heavily shaded area under
P ��x	� This implies that the probability density of the x�coordinates of the
accepted points must be proportional to P ��x	� so the samples must be
independent samples from P �x	�

Rejection sampling will work best if Q is a good approximation to P � If
Q is very di�erent from P then c will necessarily have to be large and the
frequency of rejection will be large�

���� REJECTION SAMPLING IN MANY DIMENSIONS

In a high�dimensional problem it is very likely that the requirement that
cQ� be an upper bound for P � will force c to be so huge that acceptances
will be very rare indeed� Finding such a value of c may be di�cult too�
since in many problems we don�t know beforehand where the modes of P �

are located or how high they are�
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Figure �� A Gaussian P �x� and a slightly broader Gaussian Q�x� scaled up by a factor
c such that cQ�x� � P �x��

As a case study� consider a pair of N�dimensional Gaussian distribu�
tions with mean zero ��gure �	� Imagine generating samples from one with
standard deviation �Q and using rejection sampling to obtain samples from
the other whose standard deviation is �P � Let us assume that these two
standard deviations are close in value � say� �Q is one percent larger than
�P � ��Q must be larger than �P because if this is not the case� there is
no c such that cQ upper�bounds P for all x�� So� what is the value of c
if the dimensionality is N � ����� The density of Q�x	 at the origin is
������Q	N��� so for cQ to upper�bound P we need to set

c �
����Q	N��

����P 	N��
� exp

	
N log

�Q
�P



� �
	

With N � ���� and
�Q
�P

� ����� we �nd c � exp���	 � �� ���� What will
the rejection rate be for this value of c� The answer is immediate� since
the acceptance rate is the ratio of the volume under the curve P �x	 to the
volume under cQ�x	� the fact that P and Q are normalized implies that the
acceptance rate will be ��c� For our case study� this is ���� ���� In general�
c grows exponentially with the dimensionality N �

Rejection sampling� therefore� whilst a useful method for one�dimensional
problems� is not a practical technique for generating samples from high�
dimensional distributions P �x	�

�� The Metropolis method

Importance sampling and rejection sampling only work well if the proposal
density Q�x	 is similar to P �x	� In large and complex problems it is di�cult
to create a single density Q�x	 that has this property�
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Figure �� Metropolis method in one dimension� The proposal distribution Q�x��x� is
here shown as having a shape that changes as x changes� though this is not typical of
the proposal densities used in practice�

The Metropolis algorithm instead makes use of a proposal density Q
which depends on the current state x�t�� The density Q�x�� x�t�	 might in
the simplest case be a simple distribution such as a Gaussian centred on
the current x�t�� The proposal density Q�x�� x	 can be any �xed density� It
is not necessary for Q�x�� x�t�	 to look at all similar to P �x	� An example
of a proposal density is shown in �gure 
� this �gure shows the density
Q�x�� x�t�	 for two di�erent states x��� and x����

As before� we assume that we can evaluate P ��x	 for any x� A tentative
new state x� is generated from the proposal density Q�x�� x�t�	� To decide
whether to accept the new state� we compute the quantity

a �
P ��x�	

P ��x�t�	

Q�x�t�� x�	

Q�x�� x�t�	
� ��	

If a 	 � then the new state is accepted�
Otherwise� the new state is accepted with probability a�

��	

If the step is accepted� we set x�t	�� � x�� If the step is rejected� then we
set x�t	�� � x�t�� Note the di�erence from rejection sampling� in rejection
sampling� rejected points are discarded and have no in�uence on the list of
samples fx�r�g that we collected� Here� a rejection causes the current state
to be written onto the list of points another time�

Notation� I have used the superscript r � � � � �R to label points that
are independent samples from a distribution� and the superscript t � � � � �T
to label the sequence of states in a Markov chain� It is important to note that
a Metropolis simulation of T iterations does not produce T independent
samples from the target distribution P � The samples are correlated�

To compute the acceptance probability we need to be able to compute
the probability ratios P �x�	�P �x�t�	 and Q�x�t�� x�	�Q�x�� x�t�	� If the pro�
posal density is a simple symmetrical density such as a Gaussian centred
on the current point� then the latter factor is unity� and the Metropolis
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x���Q�x�x���	
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Figure �� Metropolis method in two dimensions� showing a traditional proposal density
that has a su�ciently small step size � that the acceptance frequency will be about ����

method simply involves comparing the value of the target density at the
two points� The general algorithm for asymmetric Q� given above� is often
called the Metropolis�Hastings algorithm�

It can be shown that for any positive Q �that is� any Q such that
Q�x�� x	 � � for all x� x�	� as t 
 �� the probability distribution of x�t�

tends to P �x	 � P ��x	�Z� �This statement should not be seen as implying
that Q has to assign positive probability to every point x� � we will discuss
examples later where Q�x�� x	 � � for some x� x�� notice also that we have
said nothing about how rapidly the convergence to P �x	 takes place��

The Metropolis method is an example of a �Markov chain Monte
Carlo� method �abbreviated MCMC	� In contrast to rejection sampling
where the accepted points fx�r�g are independent samples from the desired
distribution� Markov chain Monte Carlo methods involve a Markov process
in which a sequence of states fx�t�g is generated� each sample x�t� having
a probability distribution that depends on the previous value� x�t���� Since
successive samples are correlated with each other� the Markov chain may
have to be run for a considerable time in order to generate samples that
are e�ectively independent samples from P �

Just as it was di�cult to estimate the variance of an importance sam�
pling estimator� so it is di�cult to assess whether a Markov chain Monte
Carlo method has �converged�� and to quantify how long one has to wait to
obtain samples that are e�ectively independent samples from P �
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���� DEMONSTRATION OF THE METROPOLIS METHOD

The Metropolis method is widely used for high�dimensional problems� Many
implementations of the Metropolis method employ a proposal distribution
with a length scale 	 that is short relative to the length scale L of the prob�
able region ��gure �	� A reason for choosing a small length scale is that for
most high�dimensional problems� a large random step from a typical point
�that is� a sample from P �x		 is very likely to end in a state which has very
low probability� such steps are unlikely to be accepted� If 	 is large� move�
ment around the state space will only occur when a transition to a state
which has very low probability is actually accepted� or when a large random
step chances to land in another probable state� So the rate of progress will
be slow� unless small steps are used�

The disadvantage of small steps� on the other hand� is that the Metropo�
lis method will explore the probability distribution by a random walk � and
random walks take a long time to get anywhere� Consider a one�dimensional
random walk� for example� on each step of which the state moves randomly
to the left or to the right with equal probability� After T steps of size 	�
the state is only likely to have moved a distance about

p
T	� Recall that

the �rst aim of Monte Carlo sampling is to generate a number of inde�
pendent samples from the given distribution �a dozen� say	� If the largest
length scale of the state space is L� then we have to simulate a random�
walk Metropolis method for a time T � �L�		� before we can expect to get
a sample that is roughly independent of the initial condition � and that�s
assuming that every step is accepted� if only a fraction f of the steps are
accepted on average� then this time is increased by a factor ��f �

Rule of thumb� lower bound on number of iterations of a Metropo�
lis method� If the largest length scale of the space of probable states
is L� a Metropolis method whose proposal distribution generates a ran�
dom walk with step size 	 must be run for at least T � �L�		� iterations
to obtain an independent sample�

This rule of thumb only gives a lower bound� the situation may be much
worse� if� for example� the probability distribution consists of several islands
of high probability separated by regions of low probability�

To illustrate how slow the exploration of a state space by random walk
is� �gure � shows a simulation of a Metropolis algorithm for generating
samples from the distribution�

P �x	 �

� �
�� x � f�� ��  � � � � �g
� otherwise

� ��	
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Figure �� Metropolis method for a toy problem� �a� The state sequence for t �  � � � ����
Horizontal direction � states from � to ��� vertical direction � time from  to ����
the cross bars mark time intervals of duration ��� �b� Histogram of occupancy of the
states after ��� 	�� and ��� iterations� �c� For comparison� histograms resulting when
successive points are drawn independently from the target distribution�
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The proposal distribution is

Q�x�� x	 �

� �
� x� � x� �
� otherwise

� ���	

Because the target distribution P �x	 is uniform� rejections will occur only
when the proposal takes the state to x� � �� or x� � ��

The simulation was started in the state x� � �� and its evolution is
shown in �gure �a� How long does it take to reach one of the end states
x � � and x � �� Since the distance is �� steps the rule of thumb above
predicts that it will typically take a time T � ��� iterations to reach an
end state� This is con�rmed in the present example� The �rst step into an
end state occurs on the ���th iteration� How long does it take to visit both
end states� The rule of thumb predicts about ��� iterations are required to
traverse the whole state space� And indeed the �rst encounter with the other
end state takes place on the ���th iteration� Thus e�ectively independent
samples are only generated by simulating for about four hundred iterations�

This simple example shows that it is important to try to abolish random
walk behaviour in Monte Carlo methods� A systematic exploration of the
toy state space f�� �� � � � ��g could get around it� using the same step sizes�
in about twenty steps instead of four hundred 

���� METROPOLIS METHOD IN HIGH DIMENSIONS

The rule of thumb that we discussed above� giving a lower bound on the
number of iterations of a random walk Metropolis method� also applies to
higher dimensional problems� Consider the simplest case of a target distri�
bution that is a Gaussian� and a proposal distribution that is a spherical
Gaussian of standard deviation in each direction equal to 	� Without loss
of generality� we can assume that the target distribution is a separable dis�
tribution aligned with the axes fxng� and that it has standard deviations
f�ng in the di�erent directions n� Let �max and �min be the largest and
smallest of these standard deviations� Let us assume that 	 is adjusted
such that the acceptance probability is close to �� Under this assumption�
each variable xn evolves independently of all the others� executing a ran�
dom walk with step sizes about 	� The time taken to generate e�ectively
independent samples from the target distribution will be controlled by the
largest lengthscale �max� just as in the previous section� where we needed
at least T � �L�		� iterations to obtain an independent sample� here we
need T � ��max�		��

Now how big can 	 be� The bigger it is� the smaller this number T be�
comes� but if 	 is too big � bigger than �min � then the acceptance rate
will fall sharply� It seems plausible that the optimal 	 must be similar to
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Figure 	� Gibbs sampling� �a� The joint density P �x� from which samples are required�

�b� Starting from a state x�t�� x� is sampled from the conditional density P �x�jx
�t�
� �� �c�

A sample is then made from the conditional density P �x�jx��� �d� A couple of iterations
of Gibbs sampling�

�min� Strictly� this may not be true� in special cases where the second small�
est �n is signi�cantly greater than �min� the optimal 	 may be closer to that
second smallest �n� But our rough conclusion is this� where simple spheri�
cal proposal distributions are used� we will need at least T � ��max��min	�

iterations to obtain an independent sample� where �max and �min are the
longest and shortest lengthscales of the target distribution�

This is good news and bad news� It is good news because� unlike the
cases of rejection sampling and importance sampling� there is no catas�
trophic dependence on the dimensionality N � But it is bad news in that all
the same� this quadratic dependence on the lengthscale ratio may force us
to make very lengthy simulations�

Fortunately� there are methods for suppressing random walks in Monte
Carlo simulations� which we will discuss later�
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	� Gibbs sampling

We introduced importance sampling� rejection sampling and the Metropo�
lis method using one�dimensional examples� Gibbs sampling� also known
as the heat bath method� is a method for sampling from distributions over
at least two dimensions� It can be viewed as a Metropolis method in which
the proposal distribution Q is de�ned in terms of the conditional distri�
butions of the joint distribution P �x	� It is assumed that whilst P �x	 is
too complex to draw samples from directly� its conditional distributions
P �xijfxjgj ��i	 are tractable to work with� For many graphical models �but
not all	 these one�dimensional conditional distributions are straightforward
to sample from� Conditional distributions that are not of standard form
may still be sampled from by adaptive rejection sampling if the conditional
distribution satis�es certain convexity properties �Gilks and Wild ���	�

Gibbs sampling is illustrated for a case with two variables �x�� x�	 � x
in �gure �� On each iteration� we start from the current state x�t�� and x�
is sampled from the conditional density P �x�jx�	� with x� �xed to x

�t�
� � A

sample x� is then made from the conditional density P �x�jx�	� using the
new value of x�� This brings us to the new state x�t	��� and completes the
iteration�

In the general case of a system with K variables� a single iteration
involves sampling one parameter at a time�

x
�t	��
� � P �x�jx�t�� � x

�t�

 � � � �x

�t�
K 	 ���	

x
�t	��
� � P �x�jx�t	��� � x

�t�

 � � � �x

�t�
K 	 ��	

x
�t	��

 � P �x
jx�t	��� � x

�t	��
� � � � �x

�t�
K 	� etc� ���	

Gibbs sampling can be viewed as a Metropolis method which has the prop�
erty that every proposal is always accepted� Because Gibbs sampling is a
Metropolis method� the probability distribution of x�t� tends to P �x	 as
t
�� as long as P �x	 does not have pathological properties�

���� GIBBS SAMPLING IN HIGH DIMENSIONS

Gibbs sampling su�ers from the same defect as simple Metropolis algo�
rithms � the state space is explored by a random walk� unless a fortuitous
parameterization has been chosen which makes the probability distribution
P �x	 separable� If� say� two variables x� and x� are strongly correlated�
having marginal densities of width L and conditional densities of width 	�
then it will take at least about �L�		� iterations to generate an indepen�
dent sample from the target density� However Gibbs sampling involves no
adjustable parameters� so it is an attractive strategy when one wants to get
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a model running quickly� An excellent software package� BUGS� is available
which makes it easy to set up almost arbitrary probabilistic models and
simulate them by Gibbs sampling �Thomas� Spiegelhalter and Gilks ���	�


� Terminology for Markov chain Monte Carlo methods

We now spend a few moments sketching the theory on which the Metropolis
method and Gibbs sampling are based�

A Markov chain can be speci�ed by an initial probability distribution
p����x	 and a transition probability T �x��x	�

The probability distribution of the state at the �t��	th iteration of the
Markov chain is given by

p�t	���x�	 �

Z
dNx T �x��x	p�t��x	� ���	

We construct the chain such that�

�� The desired distribution P �x	 is the invariant distribution of the
chain�
A distribution ��x	 is an invariant distribution of T �x��x	 if

��x�	 �
Z
dNx T �x��x	��x	� ���	

� The chain must also be ergodic� that is�

p�t��x	 
 ��x	 as t
�� for any p����x	� ��
	

It is often convenient to construct T by mixing or concatenating simple
base transitions B all of which satisfy

P �x�	 �
Z
dNxB�x��x	P �x	� ���	

for the desired density P �x	� These base transitions need not be individually
ergodic�

Many useful transition probabilities satisfy the detailed balance prop�
erty�

T �x��x	P �x	 � T �x�x�	P �x�	� for all x and x�� ���	

This equation says that if we pick a state from the target density P and
make a transition under T to another state� it is just as likely that we will
pick x and go from x to x� as it is that we will pick x� and go from x� to
x� Markov chains that satisfy detailed balance are also called reversible
Markov chains� The reason why the detailed balance property is of interest
is that detailed balance implies invariance of the distribution P �x	 under
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the Markov chain T �the proof of this is left as an exercise for the reader	�
Proving that detailed balance holds is often a key step when proving that
a Markov chain Monte Carlo simulation will converge to the desired distri�
bution� The Metropolis method and Gibbs sampling method both satisfy
detailed balance� for example� Detailed balance is not an essential condi�
tion� however� and we will see later that irreversible Markov chains can be
useful in practice�

�� Practicalities

Can we predict how long a Markov chain Monte Carlo simulation
will take to equilibrate� By considering the random walks involved in a
Markov chain Monte Carlo simulation we can obtain simple lower bounds

on the time required for convergence� But predicting this time more pre�
cisely is a di�cult problem� and most of the theoretical results are of little
practical use�
Can we diagnose or detect convergence in a running simulation�
This is also a di�cult problem� There are a few practical tools available�
but none of them is perfect �Cowles and Carlin ���
	�
Can we speed up the convergence time and time between inde�
pendent samples of a Markov chain Monte Carlo method� Here�
there is good news�

	��� SPEEDING UP MONTE CARLO METHODS

������ Reducing random walk behaviour in Metropolis methods

The hybrid Monte Carlo method reviewed in Neal �����	 is a Metropolis
method applicable to continuous state spaces which makes use of gradient
information to reduce random walk behaviour�

For many systems� the probability P �x	 can be written in the form

P �x	 �
e�E�x�

Z
���	

where not only E�x	� but also its gradient with respect to x can be read�
ily evaluated� It seems wasteful to use a simple random�walk Metropolis
method when this gradient is available � the gradient indicates which di�
rection one should go in to �nd states with higher probability 

In the hybrid Monte Carlo method� the state space x is augmented by
momentum variables p� and there is an alternation of two types of proposal�
The �rst proposal randomizes the momentum variable� leaving the state x
unchanged� The second proposal changes both x and p using simulated
Hamiltonian dynamics as de�ned by the Hamiltonian

H�x�p	 � E�x	 � K�p	� ���	
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g � gradE � x � � � set gradient using initial x

E � findE � x � � � set objective function too

for l � ��L � loop L times

p � randn � size�x� � � � initial momentum is Normal�����

H � p	 
 p � �  E � � evaluate H�x�p�

xnew � x

gnew � g �

for tau � ��Tau � make Tau �leapfrog	 steps

p � p � epsilon 
 gnew � � � � make half�step in p

xnew � xnew  epsilon 
 p � � make step in x

gnew � gradE � xnew � � � find new gradient

p � p � epsilon 
 gnew � � � � make half�step in p

endfor

Enew � findE � xnew � � � find new value of H

Hnew � p	 
 p � �  Enew �

dH � Hnew � H � � Decide whether to accept

if � dH � � � accept � � �

elseif � rand�� � exp��dH� � accept � � �

else accept � � �

endif

if � accept �

g � gnew � x � xnew � E � Enew �

endif

endfor

Figure �
� Octave source code for the hybrid Monte Carlo method�

where K�p	 is a �kinetic energy� such as K�p	 � pTp�� These two propos�
als are used to create �asymptotically	 samples from the joint density

PH�x�p	 �
�

ZH
exp��H�x�p	� �

�

ZH
exp��E�x	� exp��K�p	�� ���	

This density is separable� so it is clear that the marginal distribution of x is
the desired distribution exp��E�x	��Z� So� simply discarding the momen�
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Figure ��� �a�b� Hybrid Monte Carlo used to generate samples from a bivariate Gaus�
sian with correlation � � ����
� �c�d� Random�walk Metropolis method for comparison�
�a� Starting from the state indicated by the arrow� the continuous line represents two
successive trajectories generated by the Hamiltonian dynamics� The squares show the
endpoints of these two trajectories� Each trajectory consists of Tau � � �leapfrog� steps
with epsilon � ������ After each trajectory� the momentum is randomized� Here� both
trajectories are accepted� the errors in the Hamiltonian were ����� and ����� respec�
tively� �b� The second �gure shows how a sequence of four trajectories converges from
an initial condition� indicated by the arrow� that is not close to the typical set of the
target distribution� The trajectory parameters Tau and epsilon were randomized for
each trajectory using uniform distributions with means � and ����� respectively� The
�rst trajectory takes us to a new state� ����������� similar in energy to the �rst state�
The second trajectory happens to end in a state nearer the bottom of the energy land�
scape� Here� since the potential energy E is smaller� the kinetic energy K � p��� is
necessarily larger than it was at the start� When the momentum is randomized for the
third trajectory� its magnitude becomes much smaller� After the fourth trajectory has
been simulated� the state appears to have become typical of the target density� �c� A
random�walk Metropolis method using a Gaussian proposal density with radius such
that the acceptance rate was �
� in this simulation� The number of proposals was �
 so
the total amount of computer time used was similar to that in �a�� The distance moved is
small because of random walk behaviour� �d� A random�walk Metropolis method given
a similar amount of computer time to �b��
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tum variables� we will obtain a sequence of samples fx�t�g which asymp�
totically come from P �x	�

The �rst proposal draws a new momentum from the Gaussian density
exp��K�p	��ZK� During the second� dynamical proposal� the momentum
variable determines where the state x goes� and the gradient of E�x	 de�
termines how the momentum p changes� in accordance with the equations

!x � p ��	

!p � �
E�x	


x
� ���	

Because of the persistent motion of x in the direction of the momentum
p� during each dynamical proposal� the state of the system tends to move
a distance that goes linearly with the computer time� rather than as the
square root�

If the simulation of the Hamiltonian dynamics is numerically perfect
then the proposals are accepted every time� because the total energy H�x�p	
is a constant of the motion and so a in equation ��	 is equal to one� If the
simulation is imperfect� because of �nite step sizes for example� then some
of the dynamical proposals will be rejected� The rejection rule makes use of
the change in H�x�p	� which is zero if the simulation is perfect� The occa�
sional rejections ensure that asymptotically� we obtain samples �x�t��p�t�	
from the required joint density PH�x�p	�

The source code in �gure �� describes a hybrid Monte Carlo method
which uses the �leapfrog� algorithm to simulate the dynamics on the function
findE�x�� whose gradient is found by the function gradE�x�� Figure ��
shows this algorithm generating samples from a bivariate Gaussian whose
energy function is E�x	 � �

�x
TAx with

A �

�
���� ������

������ ����

�
� ���	

����� Overrelaxation

The method of �overrelaxation� is a similar method for reducing ran�
dom walk behaviour in Gibbs sampling� Overrelaxation was originally in�
troduced for systems in which all the conditional distributions are Gaus�
sian� �There are joint distributions that are not Gaussian whose conditional
distributions are all Gaussian� for example� P �x� y	 � exp��x�y�	�Z�	

In ordinary Gibbs sampling� one draws the new value x
�t	��
i of the cur�

rent variable xi from its conditional distribution� ignoring the old value

x
�t�
i � This leads to lengthy random walks in cases where the variables are

strongly correlated� as illustrated in the left hand panel of �gure ��
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Figure ��� Overrelaxation contrasted with Gibbs sampling for a bivariate Gaussian with
correlation � � ����
� �a� The state sequence for 	� iterations� each iteration involving one
update of both variables� The overrelaxation method had � � ����
� �This excessively
large value is chosen to make it easy to see how the overrelaxation method reduces
random walk behaviour�� The dotted line shows the contour xT���x � � �b� Detail of
�a�� showing the two steps making up each iteration� �After Neal �������

In Adler�s �����	 overrelaxation method� one instead samples x
�t	��
i

from a Gaussian that is biased to the opposite side of the conditional dis�
tribution� If the conditional distribution of xi is Normal��� ��	 and the

current value of xi is x
�t�
i � then Adler�s method sets xi to

x
�t	��
i � � � ��x

�t�
i � �	 � ��� ��	����� ���	

where  � Normal��� �	 and � is a parameter between �� and �� commonly
set to a negative value�

The transition matrix T �x��x	 de�ned by this procedure does not satisfy
detailed balance� The individual transitions for the individual coordinates
just described do satisfy detailed balance� but when we form a chain by ap�
plying them in a �xed sequence� the overall chain is not reversible� If� say�
two variables are positively correlated� then they will �on a short timescale	
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evolve in a directed manner instead of by random walk� as shown in �g�
ure �� This may signi�cantly reduce the time required to obtain e�ectively
independent samples� This method is still a valid sampling strategy � it
converges to the target density P �x	 � because it is made up of transitions
that satisfy detailed balance�

The overrelaxation method has been generalized by Neal ������ and
this volume	 whose �ordered overrelaxation� method is applicable to any
system where Gibbs sampling is used� For practical purposes this method
may speed up a simulation by a factor of ten or twenty�

������ Simulated annealing

A third technique for speeding convergence is simulated annealing� In
simulated annealing� a �temperature� parameter is introduced which� when
large� allows the system to make transitions which would be improbable at
temperature �� The temperature may be initially set to a large value and
reduced gradually to �� It is hoped that this procedure reduces the chance of
the simulation�s becoming stuck in an unrepresentative probability island�

We asssume that we wish to sample from a distribution of the form

P �x	 �
e�E�x�

Z
��
	

where E�x	 can be evaluated� In the simplest simulated annealing method�
we instead sample from the distribution

PT �x	 � �
Z�T �e

�
E�x�
T ���	

and decrease T gradually to ��
Often the energy function can be separated into two terms�

E�x	 � E��x	 � E��x	� ���	

of which the �rst term is �nice� �for example� a separable function of x	 and
the second is �nasty�� In these cases� a better simulated annealing method
might make use of the distribution

P �
T �x	 � �

Z��T �e
�E��x��

E��x�
T ���	

with T gradually decreasing to �� In this way� the distribution at high
temperatures reverts to a well�behaved distribution de�ned by E��

Simulated annealing is often used as an optimization method� where the
aim is to �nd an x that minimizes E�x	� in which case the temperature is
decreased to zero rather than to �� As a Monte Carlo method� simulated
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annealing as described above doesn�t sample exactly from the right dis�
tribution� the closely related �simulated tempering� methods �Marinari and
Parisi ���	 correct the biases introduced by the annealing process by mak�
ing the temperature itself a random variable that is updated in Metropolis
fashion during the simulation�

	��� CAN THE NORMALIZING CONSTANT BE EVALUATED�

If the target density P �x	 is given in the form of an unnormalized density
P ��x	 with P �x	 � �

ZP
��x	� the value of Z may well be of interest� Monte

Carlo methods do not readily yield an estimate of this quantity� and it
is an area of active research to �nd ways of evaluating it� Techniques for
evaluating Z include�

�� Importance sampling �reviewed by Neal �����		�
� �Thermodynamic integration� during simulated annealing� the �accep�

tance ratio� method� and �umbrella sampling� �reviewed by Neal �����		�
�� �Reversible jump Markov chain Monte Carlo� �Green ����	�

Perhaps the best way of dealing with Z� however� is to �nd a solution to
one�s task that does not require that Z be evaluated� In Bayesian data mod�
elling one can avoid the need to evaluate Z � which would be important
for model comparison � by not having more than one model� Instead of
using several models �di�ering in complexity� for example	 and evaluating
their relative posterior probabilities� one can make a single hierarchical
model having� for example� various continuous hyperparameters which play
a role similar to that played by the distinct models �Neal ���
	�

	��� THE METROPOLIS METHOD FOR BIG MODELS

Our original description of the Metropolis method involved a joint updating
of all the variables using a proposal density Q�x��x	� For big problems it
may be more e�cient to use several proposal distributions Q�b��x��x	� each
of which updates only some of the components of x� Each proposal is indi�
vidually accepted or rejected� and the proposal distributions are repeatedly
run through in sequence�

In the Metropolis method� the proposal density Q�x��x	 typically has
a number of parameters that control� for example� its �width�� These pa�
rameters are usually set by trial and error with the rule of thumb being
that one aims for a rejection frequency of about ���� It is not valid to have
the width parameters be dynamically updated during the simulation in a
way that depends on the history of the simulation� Such a modi�cation
of the proposal density would violate the detailed balance condition which
guarantees that the Markov chain has the correct invariant distribution�
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	��� GIBBS SAMPLING IN BIG MODELS

Our description of Gibbs sampling involved sampling one parameter at a
time� as described in equations ������	� For big problems it may be more
e�cient to sample groups of variables jointly� that is to use several proposal
distributions�

x
�t	��
� � � � x�t	��a � P �x� � � �xajx�t�a	� � � � x�t�K 	 ���	

x
�t	��
a	� � � � x

�t	��
b � P �xa	� � � �xbjx�t	��� � � � x�t	��a � x

�t�
b	� � � � x

�t�
K 	� etc�� ���	

	��� HOW MANY SAMPLES ARE NEEDED�

At the start of this chapter� we observed that the variance of an estimator
�� depends only on the number of independent samples R and the value of

�� �

Z
dNx P �x	���x	� �	�� ��	

We have now discussed a variety of methods for generating samples from
P �x	� How many independent samples R should we aim for�

In many problems� we really only need about twelve independent sam�
ples from P �x	� Imagine that x is an unknown vector such as the amount
of corrosion present in each of ������ underground pipelines around Sicily�
and ��x	 is the total cost of repairing those pipelines� The distribution
P �x	 describes the probability of a state x given the tests that have been
carried out on some pipelines and the assumptions about the physics of
corrosion� The quantity � is the expected cost of the repairs� The quantity
�� is the variance of the cost � � measures by how much we should expect
the actual cost to di�er from the expectation ��

Now� how accurately would a manager like to know �� I would suggest
there is little point in knowing � to a precision �ner than about ���� After
all� the true cost is likely to di�er by �� from �� If we obtain R � �
independent samples from P �x	� we can estimate � to a precision of ��

p
�

� which is smaller than ���� So twelve samples su�ce�

	�
� ALLOCATION OF RESOURCES

Assuming we have decided how many independent samples R are required�
an important question is how one should make use of one�s limited computer
resources to obtain these samples�

A typical Markov chain Monte Carlo experiment involves an initial pe�
riod in which control parameters of the simulation such as step sizes may be
adjusted� This is followed by a �burn in� period during which we hope the
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(1)

(2)

(3)

Figure ��� Three possible Markov Chain Monte Carlo strategies for obtaining twelve
samples using a �xed amount of computer time� Computer time is represented by hor�
izontal lines� samples by white circles� �� A single run consisting of one long �burn in�
period followed by a sampling period� ��� Four medium�length runs with di�erent initial
conditions and a medium�length burn in period� ��� Twelve short runs�

simulation �converges� to the desired distribution� Finally� as the simulation
continues� we record the state vector occasionally so as to create a list of
states fx�r�gRr�� that we hope are roughly independent samples from P �x	�

There are several possible strategies ��gure ��	�

�� Make one long run� obtaining all R samples from it�
� Make a few medium length runs with di�erent initial conditions� ob�

taining some samples from each�
�� Make R short runs� each starting from a di�erent random initial con�

dition� with the only state that is recorded being the �nal state of each
simulation�

The �rst strategy has the best chance of attaining �convergence�� The last
strategy may have the advantage that the correlations between the recorded
samples are smaller� The middle path appears to be popular with Markov
chain Monte Carlo experts because it avoids the ine�ciency of discarding
burn�in iterations in many runs� while still allowing one to detect problems
with lack of convergence that would not be apparent from a single run�
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	�	� PHILOSOPHY

One curious defect of these Monte Carlo methods � which are widely used
by Bayesian statisticians � is that they are all non�Bayesian� They involve
computer experiments from which estimators of quantities of interest are
derived� These estimators depend on the sampling distributions that were
used to generate the samples� In contrast� an alternative Bayesian approach
to the problem would use the results of our computer experiments to infer
the properties of the target function P �x	 and generate predictive distribu�
tions for quantities of interest such as �� This approach would give answers
which would depend only on the computed values of P ��x�r�	 at the points
fx�r�g� the answers would not depend on how those points were chosen�

It remains an open problem to create a Bayesian version of Monte Carlo
methods�

� Summary

� Monte Carlo methods are a powerful tool that allow one to implement
any probability distribution that can be expressed in the form P �x	 �
�
ZP

��x	�
� Monte Carlo methods can answer virtually any query related to P �x	

by putting the query in the form

Z
��x	P �x	 � �

R

X
r

��x�r�	� ���	

� In high�dimensional problems the only satisfactory methods are those
based on Markov chain Monte Carlo� the Metropolis method and Gibbs
sampling�

� Simple Metropolis algorithms� although widely used� perform poorly
because they explore the space by a slow random walk� More sophisti�
cated Metropolis algorithms such as hybrid Monte Carlo make use of
proposal densities that give faster movement through the state space�
The e�ciency of Gibbs sampling is also troubled by random walks�
The method of ordered overrelaxation is a general purpose technique
for suppressing them�
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